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ABSTRACT 
This paper has two objectives: the first is to show that the annual runoff of rivers such as Conchos and Nazas 

(Mexico), follow the Pareto rule of 80:20 when classes are ordered from largest to less, and can be compared 

with cascade processes. The second objective is to show that cascade process produce the core which gives rise 

to fractional integral and therefore to differential equations of fractional order. Finally, we conclude that the 

Pareto rule is a first approach to saturation described by the complementary characteristic function, and runoff 

data provide the order of the temporal derivative. Therefore, cascade processes are manifested ubiquitously in 

nature, and show us a way to evolve towards the imbalanced and become in distribution mechanisms that turn 

into a transition that destroys old and build new correlations. 
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I. INTRODUCTION 
The first objective of this paper is to show that 

the annual runoff of Conchos River reflect the 

postulate of Pareto when its data are arranged from 

highest to lowest, and compared with cascade 

processes. Pareto principle, also known as the 80:20 

rules, is named in honor of Vilfredo Pareto, Italian 

sociologist and economist who enunciated it in 1906. 

The principle specifies an unequal relationship 

between inputs and outputs stating that for many 

phenomena, 20% of invested input is responsible for 

80% of the results obtained. Put another way, 80% of 

consequences stem from 20% of the causes. This 

simple rule is observed across many disciplines and 

sectors of society. 

Cascade processes shown ubiquitous in nature, 

and present us a way to evolve towards unbalanced 

and become into distribution mechanisms that turn 

into a transition which destroys old correlations and 

build new. A leading example is the energy cascade 

in the process of turbulence which distinguishes as a 

distribution mechanism of kinetic energy and its 

eventual transformation into heat energy, and is 

known as Kolmogorov cascade or Richardson. 

Cascade processes are described by means of its 

tree form and the sequence of a generalized Cantor 

process, Fig. 1. The issue is to split gradually a unit 

to create ever smaller parts, but in turn increasingly 

numerous, thereby simultaneously combine the 

infinitely small with the infinitely numerous, and 

configure the ways in which passes a flow or a 

counterflow. Flows in these tree structures may be in 

the forward direction, as in the case of energy 

cascade, or in the reverse direction, as in the case of a 

soliton formation, this last a solitary wave 

propagating in a nonlinear medium without deformed  

 

 

(Scott, 1844); or in the process of productive 

accumulation and centralization in the economic 

sphere. If a process can result in a reverse process, an 

oscillating behavior is created. Of course there are 

equivalent descriptions as binary formulation and 

graphs, which allow relatively easily highlight 

important properties or characteristics. And we 

understand that split is similar to bifurcate, [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cantor set, example of lineal fractal. 
 

The transformations of the order and correlations 

in disorder, or entropy, and new correlations reflect 

the arrow of time; while the opposite should occur in 

the reverse process. As Boltzmann visualized, 

entropy is a measure of disorder or molecular chaos, 

while the natural evolution occurs through its 

increment with the trend toward maximum chaos as 

possible, mechanism through which energy becomes 

unavailable, because individual correlations within 

the system are destroyed or mixed; the balance could 

be called the state of maximum entropy, the chaos; 

and chaos, the subtle form of order. Evolution 
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towards imbalance and transition shows a theory of 

"becoming" as Goethe had claimed, [2]; and that, we 

celebrate as the conjunction between deterministic 

and random.  

Moreover, as a second objective we see that the 

above tree structures can also be used to construct the 

most famous and important mathematical functions 

from the point of view of the approaches, and 

establish their links with the differential equations. 

So differential equations will not be seen as a starting 

point but as an arrival point or second stage of a 

process of mathematical modeling.  

"For science, a phenomenon is ordered if their 

movements can be explained in a scheme of cause 

and effect represented by a differential equation". 

However, correlations open a range of possibilities 

within which some causes operates in a more 

decisive way, with more heft, while others do so 

more weakly. Correlations are established due to the 

presence of a set of transient causes. 

 

II. METHODS  
There are available historical records of annual 

runoff volumes for Conchos River, a tributary of the 

Rio Grande, which are led to the storage dam ‘La 

Boquilla’ in the Irrigation District 005 Delicias, 

Chihuahua. Runoff volumes record that we analyzed 

comprises a period of 80 years (1935-2014), although 

it would be desirable to have records with 4 digits to 

provide greater statistical support to our conclusions. 

Fig. 2 shows a photograph of the storage dam ‘La 

Boquilla’. 

For analysis, data sets are formed, called classes, 

uniform in size. Distribution of all data available at 

that uniform collection is studied. Number of classes 

k can be chosen according to the rule or method of 

Sturges: nk 12 , [3] , being n the size of the data 

sample, which in this case is 80 years, and is 

estimated by its nearest integer. Frequencies are 

determined by counting the number of data in each 

class, and it can be derived to account for other forms 

of frequency, as in the case of relative frequencies, 

which allows introducing the probability as a 

measure of belonging to one of the sets-classes. 

Historical records of these annual volumes are 

presented in Table 1. 

 

 

 

 

 

 

 

Figure 2. ‘La Boquilla’ storage dam, Chihuahua. 
.

 

 

 

 

Table 1. Annual runoff volume in Mm
3
 and grouped (Conchos River). 

 

Class 

number  

Class sets,  

ranges 

Class centers  

(Mm
3
) 

Frequencies  

Observed Cumulated  Relative Cum. Relative 

1 0-500 250 12 12 15.3 15.3 

2 500-1000 750 29 41 36.1 51.4 

3 1000-1500 1250 21 62 26.4 77.8 

4 1500-2000 1750 6 68 6.9 84.7 

5 2000-2500 2250 8 76 11.1 95.8 

6 2500-3000 2750 2 78 1.4 97.2 

7 3000-3500 3250 2 80 2.8 100.0 

 

A second way to group sets-classes, such as 

Pareto's proposal, is to sort the sets decreasingly 

according to their size, from largest to smallest, and 

in a similar way as cascade processes. This grouping 

is shown in Table 2.  

Pareto assumption representation is made in Fig. 

3, showing in the horizontal the frequencies in their 

new order, from highest to lowest, so that the 

greatest frequency is closer to the origin than the 

smallest. Fig. 3 shows that the highest frequency is 

around 20% and the cumulated relative frequencies 

grow from there about 20%, up to 100%, thus 

making a distance of the order of 80%. So, the 

famous proportion of the efficiency of 80:20 

enunciated by Vilfredo Pareto (1848-1923), 

Marquis, engineer and specialist in mathematical 

economics is illustrated.  
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Table 2. Frequencies ordered from largest to smaller for annual runoff in Conchos River. 

Class number 

Frequencies 

Observed Cumulated Relative  Cum. Relative 

Relative N2 29 29 36.25  36.25 

N3 21 50 26.25  62.50 

N1 12 62 15.00  77.50 

N5 8 70 10.00  87.50 

N4 6 76 7.50  95.00 

N6 2 78 2.50  97.50 

N7 2 80 2.50  100.00 

 80  100.00   

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

Figure 3. Results of applying Pareto statement to Conchos River runoff data. 

 
2.1 Probability density 

 

Moreover, for ungrouped data we perform a 

statistical analysis that allows us to find a probability 

density that give a structure to data, and its moment 

generating function, and then compared it with the 

ogive of pooled data.  

We seek for the first four central moments and 

found the following values, where the first is zero,  

]101.1205 ,104.4842 ,10[5.3089 1285  . Then we 

look for the symmetry parameters (skewness) and 

the kurtosis, themselves happen to be, respectively 

; so it has an asymmetric 

distribution of thicker tails at right and quite 

leptokurtic, and that far exceeds the kurtosis of the 

Gaussian, so it is quite away from normal. Nor 

approaches the Gumbel that have a kurtosis of 

5/12 , although its asymmetry is ...14.1  and can 

be considered of the same order to that found. We 

note that these two distributions are usually used to 

analyze this type of data. 

Subsequently, we seek for classification 

parameters according to Pearson method, and found 

the following values . As  

 

 

these two negative values we conclude that the 

probability density can be classified as Type I, or as 

Type Beta density. 

Then we seek for the two shape parameters and 

are respectively , so it is a 

decreasing density, which is shifted to the left with 

respect to the center line, with reference to logistics. 

Next, we calculate the diffusion coefficient by 

means of the variance of the probability density and 

the value of 029326.0 is found, so the areal velocity 

of diffusion is very slow.  

Furthermore, we found Hurst exponent and the 

fractal dimension of the runoff graph, which are 

respectively , where the average 

of the two must be unity; therefore both represent a 

competition among them with zero-sum, so the gain 

of one results in the loss of the other, so that the sum 

thereof be zero; but also, being 2/1H  it is 

classified as persistent. 

Then, being the classification as Type I and its 

shape parameters, we find the graph of the 

probability density, which is shown in Fig. 4. 
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Figure 4. Probability density of Conchos River 

runoff. 
 

Additionally, it is interesting to compare it with 

that outlined in grouped data which is obtained from 

the bar chart with ogive. You can imagine that with 

the gradual choice of more classes’ number and 

therefore getting smaller sets this graph may evolve 

to that shown in Fig. 4. Ogive is presented in Fig. 5 

which shows also its asymmetrical nature with 

thicker tails right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Histogram and frequencies polygon 

for Conchos River runoff.  

 

Next, we find the moment generating function 

linked to the probability density previously found, 

and its graph can be seen in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Moment generating function linked to 

the density of Fig. 4. 
 

Now, we seek for a cascade process of binomial 

type that approximates the generating function and 

found a value of 25549.0 , for the probability of 

success p  that in the binomial, the same 

information dimension of the generating function 

produce. It is inferred that adjusting appropriately 

the parameters p  and pq 1  it can be 

approach the generatrix function of confluent type 

and can be described as a cascade process of 

binomial type. 

 

2.2 Nazas River 

Besides, we also have historical records for 

annual runoff volumes of Nazas River, which are 

gathered by the storage dam 'Lazaro Cardenas' in the 

irrigation district 017 of the Lagunera Region, 

Coahuila-Durango, Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 'Lazaro Cardenas' storage dam in 

Nazas River, Durango. 
 

Flows drained record that we analyzed covers a 

period of 86 years (1929-2014). Historical records of 

annual runoff of river Nazas are presented below in 

Table 3. 

Again, the second way to group classes, as 

proposed by Pareto, is ordered sets decreasingly 
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according to its size, from larger to smaller, and 

similarly to cascade processes, as shown in Table 4. 

Information is plotted, placing in the horizontal 

the relative frequencies in the new order, from 

highest to lowest, and Fig. 8 is obtained. 

Therefore, we have been reflected in the two 

rivers, Conchos and Nazas, the statement of Pareto 

efficiency: 80% of the consequences stem from 20% 

of the causes. Or 80% of results come from 20% of 

efforts and time spent. 

 

Table 3. Annual runoff volumes in Mm
3
 and grouped for Nazas River. 

Class 

number 
Class (Mm

3
) 

Class 

centers 

Frequencies 

Observed Cumulated Relatives Cum. Rel. 

1 0 – 500 250 15 15 17.44 17.44 

2 500 – 1000 750 27 42 31.40 48.84 

3 1000 – 1500 1,250 18 60 20.93 69.77 

4 1500 – 2000 1,750 13 73 15.12 84.88 

5 2000 – 2500 2,250 9 82 10.47 95.35 

6 2500 – 3000 2,750 1 83 1.16 96.51 

7 3000 – 3500 3250 3 86 3.49 100.00 

 

Table 4. Frequencies sorted from highest to lowest for annual runoff volumes in Nazas River. 

Class marks Frequencies 
Frequencies 

Cumulated Relatives Cumulated Rel. 

2a. 27 27 31.40 31.40 

3a. 18 45 20.93 52.33 

1a. 15 60 17.44 69.77 

4a. 13 73 15.12 84.88 

5a. 9 82 10.47 95.35 

7a. 3 85 3.49 98.84 

6a. 1 86 1.16 100.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Results of applying Pareto sentence to runoff data of Nazas River. 
 

2.3 Cascades 

As second goal, cascade processes can be used to 

define the fractional integral. Cascade is now a 

sequence of mathematical operations that do the 

traits, progressively smaller, and in turn, 

progressively more numerous, so that in the limit the 

infinitely small is reached with the infinitely 

numerous and that the product of these two determine 

the result. 

Instead of the pair of numbers  2,3  by Cantor 

process, a function of the resolution is determined 

that for this case is defined by 

  1,0,   hhhf 
. Procedure of fractionate is 

performed by means of the first factor in the 
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following expression nC , ; while the second 

represents the progressive growth of traits. Thus in 

each stage of generalized Cantor process, the 

calculation outlined in (1) is performed, 

 

        
hp

n

p

n

h

n

n pDnhDC


  11,




     (1) 

 

So that for the first stage we have 

  11
1,

!1

 



hC ; then in general for the nth stage of 

this process 
  nn

n h
n
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
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!
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 is obtained, where 
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n

 are the Pochhammer symbols 

expressed by successive factors, either in terms of the 

Euler gamma function. Resolutions sequence is 

discretized as 0,  x
x

n
hn ; through 

 
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n
. Fractional integral 

is defined by the convolution    
  CxD0 ; 

therefore, with the generalized Cantor process, 

applied to potential functions, nucleuses which define 

the fractional integral are constructed [4]. 

Additionally, from parameters obtained since 

Conchos River runoff data, we can do a multifractal 

construction, at least with two options. The first as 

follows: based on the data we can define a structure 

function of Kummer type.  

In the second, the study focuses on changes that 

show graphs of runoff volumes, which look very 

irregular, so it makes no sense to think about 

introducing a slope, as limit value of relative changes 

relating to increments of its arguments. 

Then, we consider the called fractional Brownian 

motion (fBm) defined from its variations or 

fluctuations. Those fluctuations are stationary, with 

two statistical parameters that are independent of the 

index (timeless): the mean and the variogram; their 

distributions are Gaussian and also are statistically 

self-affine, which manifests as "Hurst effect." Auto 

covariance function of the fluctuations depends only 

on increases or lags. So, for large lags, the correlation 

function approaches one of the above types, and 

therefore, again, based on the data, Hurst exponent is 

estimated, which is considered as a measure of 

independence of time series and a way to distinguish 

fractals series, [5]. In Fig. 9 runoff data are shown, 

from 1935 to 2014. 

 
Figure 9. Runoff variation in Conchos River,  

1935 – 2014. 
 

It is important to note that correlation function 

tails decay slowly and thus represent long-range 

correlations, [6]; and, the larger the Hurst exponent 

the slower the fall and the longest the tail, [7].  

Once you found the Hurst exponent from the 

data, settle fractional evolution equation given by the 

differential equation (2), whose order is specified by 

H22 , and which also supports the form 

    ttDt   1 , where 


 is a 

proportionality constant which generally depends on 

the spatial behavior of the phenomenon.  

    tDtD tt    1
                      (2) 

One solution is expressed by 

   
  tEt  ,1

, which corresponds to the 

Mittag-Leffler function whose parameter is 

99972.0  and displayed in equation (3), with 

 10,   , [8]. The Mittag-Leffler function is 

normalized to 0t  by the value 1 and is decreasing 

convex; so the limit is zero, with zero slope. Then we 

define the complementary characteristic function by 

function 1-Mittag-Leffler, we now have a growth 

curve with saturation is normalized to zero 0, which 

is concave increasing and the limit is 1, with zero 

slope. Its graph is filed in Figure 10 and there also 

represent again the ogive points in class centers, [8]. 
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Figure 10. Conchos River. Complementary 

Characteristic function, Mittag-Leffler,  

 

Phenomenon description as fBm has a variance 

that scale according to H22 , and its 

correlation function. When it is estimated for large 

lags, in approximate way, corresponds to the 

generatrix function of a binomial, with cascade shape 

as power of the success probability, but the power of 

failure probability without heft, see equation (4). The 

power of probability success depends linearly on 

Hurst exponent, [6].  

 

    sFs  ,7055.4,99973.011              (4) 

 

Regarding the first option of the above, we recall 

briefly that we are dealing with sets like those with 

scattered and irregular variations. For the multifractal 

construction, we cover the entire set with mesh cubes 

with h  resolution. We define the partition function 

as the total sum of the system available macro-

configurations. Sum runs over all those cubes that 

intersect the support of microscopic measurement. 

That sum behaves as a power of the h  resolution, 

(see (5)), and the power that represents the partition 

function is known as the structure function; in our 

case is the Kummer function  s  and is shown in 

Fig. 11. 

 

     
 

 s

s

h

hs

h h
Z

sZ
hsZ   

1
,        (5) 

 

Moreover, the  hN  traits also obey a power 

law and grow when the h  resolution approaches 

zero, 

 

    f

h hN                              (6) 

 

But Legendre transform of the multifractal 

spectrum  f  is the structure function  s . And, 

the maximum is reached in  , when the concave 

curve  f  is above and as far as possible of the 

straight s , with slope s  and argument  , then 

 

 

    

      sssfs

sfs











0

sup

                   (7) 

 

Conversely, in the convex dual, when the 

Legendre inverse transform exists, in this way, the 

structure function is recovered from the multifractal 

spectrum, but now its argument is the s  scale as dual 

variable to singularity  . 

Therefore, it’s possible to assign to Conchos 

River a structure function of Kummer type, as that 

shown in Fig. 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Kummer's function structure of 

Conchos River. 

 

The most important features are: is decreasing 

convex, normalized to zero by the value 1, and when 

the scale variable increases, the function value 

decreases, and its decrement is progressively smaller 

until it eventually becomes zero. Or, the structure 

function is decreasing with decrements that are 

progressively decreasing. This decreasing is 

concomitant with progressive smallness of the traits 

of multifractal process.  

Dually, a spectrum both punctual as continuous or 

implicit could also be assigned to Conchos River. 

Now it’s about a concave function, such that when 

the singularity decreases, the function value also 

decreases and eventually reach zero. Again this 

behavior is concomitant with the multifractal process, 

where traits are progressively smaller, and reflects a 

cascade process from the vertex, as the singularity 

decrease, spectrum value decrease too. Here, 

however, the decrement of spectrum value is not 
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given by the value of the scale equal zero, but from 

3s , approximately. Spectrum is shown in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Spectrum evolution of Conchos River. 

 

Finally, we show the evolution of the spectrum 

showing results with spacing approximately a 

decade: 1995, 2006 and 2014. In Figure 12, great 

stability in the spectrum is observed, despite the great 

variability of the data that feed it. In particular, the 

stability is still higher for sufficiently large scales, 

which is interpreted as the distant past or high 

frequency; so we would argue that their own time 

evolution is reflected throughout each curve of the 

spectrum. 

 

III. CONCLUSIONS 
Runoff variations, as illustrated in the case of 

Conchos River, have the characteristic of being 

scattered and irregular. Regularity within the 

irregularity is constructed by means a multifractal 

process. To do this, from the data, a probability 

density that structured it is found. Hurst exponent is 

approximated based on one of its shape parameters. 

Whereby a fractional differential equation is created, 

whose order varies with the Hurst exponent, and 

whose solution represents a Mittag-Leffler function, 

which shows an intermediate decreasing between a 

fractal and an exponential tail. It also describes decay 

phenomena that represent long-range correlations, 

such that the higher the Hurst exponent slower the 

fall, and the tail of the density distribution become 

longer. Further, the differential equation represents a 

saturation phenomenon, where the fractional 

derivative of the complement, is proportional to the 

function itself. This saturation phenomenon is 

reflected roughly through the assumption of Pareto 

efficiency: 80% of the consequences stem from 20% 

of the causes.  
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